
Multi‐Decadal Soil Moisture and Crop Yield Variability—A
Case Study With the Community Land Model (CLM5)
Theresa Boas1,2,3 , Heye Bogena1 , Dongryeol Ryu3 , Andrew Western3 , and
Harrie‐Jan Hendricks Franssen1,2

1Forschungszentrum Jülich, Institute of Bio‐ and Geosciences: Agrosphere (IBG‐3), Jülich, Germany, 2Centre for High‐
Performance Scientific Computing in Terrestrial Systems: HPSC TerrSys, Jülich, Germany, 3Department of Infrastructure
Engineering, University of Melbourne, Parkville, VIC, Australia

Abstract While the impacts of climate change on global food security have been studied extensively, the
capability of emerging tools that couple land surface processes and crop growth in reproducing inter‐annual
yield variability at regional scale remains to be tested rigorously. In this study, we analyzed the effects of
weather variations between years (1999–2019) on regional crop productivity for two agriculturally managed
regions with contrasting climate and cropping conditions: the German state of North Rhine‐Westphalia (DE‐
NRW) and the Australian state of Victoria (AUS‐VIC), using the latest version of the Community Land Model
(CLM5) and the WFDE5 (WATCH Forcing Data methodology applied to ECMWF reanalysis version 5)
reanalysis. Overall, the simulation results were able to reproduce the total annual crop yields of certain crops,
while also capturing the differences in total yield magnitudes between the domains. However, the simulations
showed limitations in correctly capturing inter‐annual differences of crop yield compared to official yield
records, which resulted in relatively low correlation coefficients between 0.07 and 0.39 in AUS‐VIC and
between 0.11 and 0.42 in DE‐NRW. The mean absolute deviation of simulated winter wheat yields was up to 4.6
times lower compared to state‐wide records from 1999 to 2019. Our results suggest the following limitations of
CLM5: (a) limitations in simulating yield responses from plant hydraulic stress; (b) errors in simulating soil
moisture contents compared to satellite‐derived data; and (c) errors in the representation of cropland in general,
for example, crop parameterizations and human influences.

Plain Language Summary This study evaluates how year‐to‐year weather variations impact crop
yield predictions for two regions, North Rhine‐Westphalia in Germany and Victoria in Australia changes. We
use the community land model (CLM5) land surface model in combination with reanalysis weather data to
investigate the model performance with respect to the representation of crop phenology, plant water stress, and
soil moisture. Our results showcase the model's ability to predict total annual crop yield magnitudes for both
regions, while also capturing the differences between the respective simulation domains. However, year‐to‐year
changes in crop yield were lower in simulation results compared to official records, which indicated a lack of
model sensitivity toward drought stress and general limitations in the representation of agricultural land. This
research systematically assesses CLM5 model performance over arable land and provides useful insights into
limitations of CLM5 that can help guide future empirical and technical model improvements.

1. Introduction
Agricultural production and management are closely connected to weather and climate conditions and farming
yields are significantly affected by inter‐annual weather variability. In addition to changes in annual average
temperatures and shifts in seasonality, recent climate projections also indicate an increasing number of extreme
weather events and a higher intensity of such events, which poses a new challenge for agriculture (Challinor
et al., 2014; Deryng et al., 2014; Levis et al., 2018; Rosenzweig et al., 2014; Tai et al., 2014; Urban et al., 2012).
The impacts of climate change on food security and agricultural land are a research topic with high relevance to
society. In addition, the fluxes of water, energy and carbon associated with agriculture (use of irrigation and
fertilizer, timing of crop growth and fallow periods, etc.) can have implications for local and regional weather and
climate, and biochemistry (Sacks et al., 2009).

Numerical modeling of Earth system components plays a vital role in assessing the impacts of climate change,
exploring adaptation strategies and their impact on various parts of the terrestrial system. Land surface models
(LSMs) such as the Community Land Model (CLM) are essential tools for studying changes in response to
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weather conditions and are particularly valuable for examining the effects of climate change on agricultural land
at larger spatial scales. Prognostic simulations of land surface models (LSMs) and global crop models can be used
to quantify the impact of climate change on agro‐ecosystems and study the response of agricultural land to inter‐
annual weather variations. While both contribute to our understanding of Earth's systems, LSMs encompass a
broader focus on land surface processes, including natural ecosystems, while global crop models specialize in
simulating and analyzing agricultural systems at a global scale. For example, results from the Global Gridded
Crop Model Intercomparison (GGCMI; Franke et al., 2020; Jägermeyr et al., 2021) offer valuable insights into
long‐term productivity trends and the adaptive capacity of the agricultural system under different climate sce-
narios on a global scale and have been applied to investigate various questions, for example, on challenges for
food production, future crop yields and irrigation water demand (e.g., Blanchard et al., 2017; Jägermeyr
et al., 2021; Müller et al., 2015; Wada et al., 2013). The Agricultural Model Intercomparison and Improvement
Project (AgMIP) is another important example of a research initiative focused on improving agricultural models
and enhancing our understanding of climate change impacts on food security and developing integrated
assessment tools for decision‐making in agriculture (e.g., Asseng et al., 2019; Cammarano et al., 2020; Kimball
et al., 2019; Rosenzweig et al., 2013, 2014; Tumbo et al., 2020; White et al., 2013). Multiple studies have
showcased assessments of AgMIP data sets at the regional scale and for a variety of crops, which revealed
significant variations in climate change impacts on wheat yields across different regions, emphasizing the need
for tailored adaptation strategies (e.g., Asseng et al., 2019; Cammarano et al., 2020; Kimball et al., 2019;
Rosenzweig et al., 2014).

The impacts of climate change on food security have received considerable attention in recent years. Still, the
consequences of altered weather patterns on yearly yield variations remains an important area of interest. The
potential value of LSMs for these purposes largely depends on their ability to adequately simulate the crop
productivity variability, which has not been tested rigorously for dryland and dominantly rain‐fed cropping re-
gions, where yield is vulnerable to drought and heat stresses. The inter‐annual variability of model output is an
important performance measure for land surface models (LSMs) as it reflects the ability of the model to capture
the natural variability observed in the real world over multiple years. Assessing and understanding inter‐annual
variability of terrestrial fluxes is crucial for various applications, including climate projections, agricultural
management, water resources management, and ecosystem dynamics. Reliable predictions of regional crop yield
variability can help to design agricultural adaptation and mitigation strategies and can provide useful information
for local stakeholders and policy makers.

In order to adequately represent inter‐annual variability of crop growth, it is crucial for the model to sufficiently
represent the soil moisture regime and corresponding vegetative drought stress in response to changes in pre-
cipitation amounts, specifically in dominantly rain‐fed areas. While an increasing number of studies focus on
incorporating irrigation and human water use in LSMs and hydrological models in general (e.g., McDermid
et al., 2023; Pokhrel et al., 2012, 2016; Shah et al., 2019; Xia et al., 2022; Yassin et al., 2019), many challenges
still remain in representing rain‐water limited agricultural regimes in general circulation models and LSMs.

The realistic representation of many processes is still a challenge in LSMs. Major challenges arise from the
complex representation of soil‐plant‐atmosphere feedbacks, root water uptake and plant responses to environ-
mental stress, land use and land cover change, spatial heterogeneity in soil properties, vegetation cover and
topography, and uncertainties in model parameterizations (Blyth et al., 2021; Dagon et al., 2020; Fisher &
Koven, 2020; Franks et al., 2018; Huntzinger et al., 2013; Lombardozzi et al., 2020; Sabot et al., 2022; Sulis
et al., 2019; Trugman et al., 2018). The ability of LSMs to capture the impacts of land use change on biogeo-
chemistry and hydrology is often limited by the oversimplification of human influences on land use and land
cover, such as agricultural practices and management decisions. Additionally, multiple studies found that the
representation of plant responses to environmental stress need to be improved in global LSMs (De Kauwe, Zhou,
et al., 2015; Franks et al., 2018; Sabot et al., 2022; Sulis et al., 2019). In a recent study, Boas et al. (2023)
highlighted the potential value of combining CLM5 with seasonal weather forecasts. They also identified limi-
tations of the model in capturing inter‐annual variations in agricultural characteristics over a short period of four
cropping seasons.

Focusing on soil water, root water uptake plays an important role in rain‐fed agricultural systems and is often
simplified in LSMs, which can affect simulated vegetation growth, productivity and water use efficiency of the
plants (De Kauwe, Zhou, et al., 2015; Sulis et al., 2019). Most LSMs, including earlier versions of CLM, utilize
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soil moisture stress parameterizations where water stress is based on a plant wilting factor (calculated with the soil
water matric potential values corresponding to plant dependent parameters for fully open and fully closed stomata
conditions) (Lawrence et al., 2019). In contrast to this physical representation, the active role of roots in redis-
tributing water within the soil profile has been investigated by numerous studies and different formulations of root
hydraulic redistribution have been included in LSMs, highlighting the relevance of atmospheric processes and
carbon and nutrient cycling (e.g., Li et al., 2012; Ryel et al., 2002; Sulis et al., 2019; Tang et al., 2015; Yan &
Dickinson, 2014; Zheng & Wang, 2007). CLM5 includes a plant hydraulic stress model that replaced the
empirical soil moisture stress formulation from earlier model versions (Lawrence et al., 2019). This plant hy-
draulic stress scheme simulates vegetation water potential for every segment in the soil‐root‐stem‐leaf system and
includes a stress formulation where leaf water potential is used to attenuate photosynthesis. This plant hydraulic
framework provides a better physical basis for multiple processes represented in CLM, such as the attenuation of
photosynthesis and transpiration during drought conditions (Lawrence et al., 2019). A similar approach has been
presented in Sulis et al. (2019), where a macroscopic root water uptake model was introduced in CLM (version
4.0) that also explicitly simulated the leaf water potential at stomatal closure defining water stress conditions for
the plants. They found that root hydraulic properties control transpiration during dry periods and that the roots
distribution induced a larger variability in the hydraulic model response (Sulis et al., 2019). Their modified model
resulted in a good correlation of simulated and observed transpiration fluxes for a winter wheat test site and a more
distinct response under water stress conditions compared to default model simulations (Sulis et al., 2019). The
subject of plant response to drought stress also encompasses the representation of stomatal conductance. In a
recent study by Sabot et al. (2022), multiple empirical and optimization formulations for stomatal conductance
were evaluated using a simplified LSM framework. They found that the selection of the stomatal conductance
model could considerably influence the simulation of carbon and water exchange in global models. Further
factors that can impact inter‐annual variations in yield variability and that also need to be considered in the
numerical representation of the system are changes in crop management practices in relation to technical ad-
vances, public policies, and farming techniques such as fertilization or double‐cropping, as well as pests, diseases,
and floods (Lombardozzi et al., 2020).

Furthermore, the accuracy of LSMs also heavily depends on their complex parameterizations that aim to account
for a wide range of variability in soil and vegetation types. Uncertainties arise due to the limited availability of
observational data for parameter estimation and validation as well as the complexity of the parameterizations
themselves, leading to potential errors in model predictions (Boas et al., 2021; Huntzinger et al., 2013; Lom-
bardozzi et al., 2020; Lu et al., 2017; Sulis et al., 2015). In addition to improvements in model parameterization
(e.g., through new methods for parameter estimation and uncertainty quantification), the study by Fisher and
Koven (2020) highlights the role of data assimilation techniques, including the use of remote sensing and machine
learning, that can help improve the accuracy of LSM predictions (e.g., Dagon et al., 2020; Pinnington et al., 2020,
2021).

This study aims to analyze the model performance across two regions with different climates and dominated by
rain‐fed agriculture, for a period spanning multiple decades. Specifically, we assessed the ability of the CLM5
with its prognostic crop module to capture the inter‐annual variability of crop yield, soil moisture and plant water
stress over two simulation domains: one covering large parts of the south‐east Australian wheat belt in the state of
Victoria in Australia (AUS‐VIC) and the other extending over the state of North Rhine‐Westphalia in Germany
(DE‐NRW). Simulations were conducted over the two regional domains, which are in different climate zones, and
forced with the global bias‐adjusted reanalysis data set WFDE5 (Cucchi et al., 2020). We compared our simu-
lation results with recorded yields and examined which variables (i.e., seasonal rainfall, root zone soil moisture)
dominantly drive changes in CLM5‐predicted total yield and yield variability. Additionally, the simulated multi‐
decadal near‐surface soil moisture was compared with two reference data sets, the combined ESA‐CCI product
(Dorigo et al., 2017) and the satellite‐derived SMAP L3 soil moisture product (Entekhabi et al., 2016). In this
study, we provide an overview on multi‐decadal model performance across two model domains, both of which are
dominated by rain‐fed agriculture and with state‐wide agricultural yield statistics available as validation data. The
results of this follow‐up study provide valuable insights for the use of CLM5 in agricultural landscapes. We
addressed both the model's skill and limitations in predicting long‐term variations in annual crop productivity and
soil moisture levels at the regional scale, which allowed us to highlight specific areas in need for further
investigation.

Journal of Advances in Modeling Earth Systems 10.1029/2023MS004023

BOAS ET AL. 3 of 31

 19422466, 2024, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S004023 by Forschungszentrum
 Jülich G

m
bH

 R
esearch C

enter, W
iley O

nline L
ibrary on [12/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2. Methodology
2.1. Land Surface Model

In this study, all simulation were carried out with CLM5, which is the first model version that includes a fully
prognostic crop module (Lawrence et al., 2018, 2019; Lombardozzi et al., 2020). In CLM5, human management
is represented by fertilization and irrigation. Other aspects of agricultural management, such as residue man-
agement and soil tillage, or ecological factors affecting crops, such as pests, diseases, or wildlife damage, are also
not accounted for in CLM5 at this stage of development. Crop growth and phenology are simulated based on
atmospheric factors (i.e., incoming shortwave and longwave radiation, atmospheric pressure, relative humidity,
wind speed and temperature) and water availability from irrigation and precipitation (soil moisture). Besides, crop
biomass and yield depend on nutrient availability in the soil. Fertilization is represented in a simplified scheme by
adding prescribed amounts of nitrogen directly to the soil mineral pool. The possibility of simulating crop growth
and development in CLM5 enables a broader and more accurate approach to address economic challenges and
questions in land use change and agriculture (e.g., Lobell et al., 2006). Furthermore, a new plant hydraulic stress
formulation was introduced in CLM5 that explicitly simulates the transport of water within the soil‐root‐leaf
system, as well as the plant‐mediated vertical hydraulic redistribution of soil water from wet to dry soil layers
was implemented (Lawrence et al., 2018, 2019). While CLM5 does not explicitly model groundwater dynamics, it
indirectly considers its effects on crop growth through its representation of soil moisture dynamics (redistribution
within the soil column) and groundwater discharge and recharge. Groundwater is simulated with explicit rep-
resentation of the saturated and unsaturated zone, using soil thickness and impermeable bedrock as a zero‐flux
boundary. Soil profile depths are based on a spatially explicit soil thickness data product by Pelletier
et al. (2016). Additionally, the stomatal conductance scheme was updated in CLM5 to the approach proposed by
Medlyn et al. (2011). The new model formulations led to better performance in simulating ecosystem water
fluxes, vegetation water stress, and productivity, thus providing a basis for an improved plant water use and water
stress simulation in future applications of the model (Lawrence et al., 2019).

The plant hydraulic stress routine simulates water transport in the soil‐root‐stem‐leaf system by explicitly
calculating water potential gradients based on Darcy's Law for porous media flow (Lawrence et al., 2018, 2019
and references therein). The representation of either positive or negative soil‐to‐root fluxes depending on the
water potential gradients allows for a plant‐mediated vertical hydraulic redistribution of soil water from wet to dry
soil layers through vegetation tissue (Lawrence et al., 2018, 2019).

Water potential gradients in the soil‐root‐stem‐leaf system (water fluxes from soil to root, from root to stem and in
between the plant segments) are modeled at each time step as follows (Lawrence et al., 2018, 2019):

q = kA (ψ1 − ψ2) (1)

where q is the flux of water spanning the segment between ψ1 and ψ2 [mmH2O/s], ψ1–ψ2 is the gradient in water
potential across the segments [mmH2O], k is the hydraulic conductance [s− 1] and A is the area basis [m2/m2].

The segment's resistance to hydraulic stress is calculated with a sigmoidal curve function, where hydraulic
conductance decreases as water potentials decrease. The maximum segment conductance is multiplied by a
sigmoidal function that accounts for the percentage loss of conductivity using the water potential at 50% loss of
conductivity (p50) and a shape parameter (Lawrence et al., 2018):

k = kmax · 2
− ( ψ1

p50)

ck

(2)

where kmax is the maximum segment conductance [s− 1], p50 is the water potential at 50% loss of conductivity
[mmH2O], ψ1 is the water potential of the lower segment terminus [mmH2O] and ck is the vulnerability curve
shape‐fitting parameter [‐]. Parameters such as kmax, p50 and ck strongly control the modeled plant hydraulic stress
routine and thus determine the capability of the plant to extract water from the soil and to resist hydraulic stress.
These routines are physically constrained by the plant hydraulic parameterization after Kennedy et al. (2019)
which until now contains the same parameters for all crops.
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In this routine, the vegetation water potential responds to water supply and transpiration demand (i.e., plant water
demand), and transpiration demand is dependent on stomatal conductance. The leaf stomatal conductance and leaf
photosynthesis are modeled for sunlit and shaded leaves separately based on the approaches after Medlyn
et al. (2011), and Farquhar et al. (1980) for C3 plants and Collatz et al. (1992) for C4 plants (Lawrence et al., 2018).
Adapted from Medlyn et al. (2011), the leaf stomatal resistance is calculated using the net leaf photosynthesis, the
vapor pressure deficit and the CO2 concentration at the leaf surface with plant‐specific slope parameters based on
de Kauwe et al. (2015a) and Lin et al. (2015) as follows (Lawrence et al., 2018):

1
rs
= gs = go + 1.6(1 +

g1̅̅ ̅̅
D

√ )
An
cs
Patm

(3)

where rs is leaf stomatal resistance [s m2/μmol], go is the minimum stomatal conductance [μmol/m2/s], An is leaf
net photosynthesis [μmolCO2/m

2/s], g1 is the plant dependent slope parameter [‐] (for a full parameter table see
Lawrence et al. (2018)), cs is the CO2 partial pressure at the leaf surface [Pa] and Patm is the atmospheric pressure
[Pa] and D is the vapor pressure deficit at the leaf surface [kPa].

The leaf transpiration is regulated by the leaf water potential. It is calculated for shaded and sunlit leaves
separately based on maximum transpiration multiplied by the percent of maximum transpiration as modeled by
the sigmoidal loss function (Equation 2) (Lawrence et al., 2018). Plant water stress is then calculated for shaded
and sunlit leaves separately as the ratio of stomatal conductance of the leaf transpiration relative to maximum
stomatal conductance corresponding to maximum transpiration (Lawrence et al., 2018). Leaf transpiration and the
transpiration water stress (transpiration beta) are calculated for sunlit and shaded leaves separately as follows:

E = Emax · 2
− ( ψ

p50e
)

ck

,
(4)

βt =
gs
gs,max

, (5)

where E is leaf transpiration [mm/s], Emax is the leaf transpiration in the absence of water stress [mm/s], βt is the
transpiration water stress [‐], gs is the stomatal conductance of water corresponding to leaf transpiration [μmol/
m2/s], and gs,max is the stomatal conductance of water corresponding to maximum transpiration [μmol/m2/s]. The
calculated transpiration water stress is then used for the attenuation of photosynthesis, where βt = 1 is no water
stress and βt < 1 is the relative transpiration water stress.

For a more detailed description of the algorithms applied in CLM5, the reader is referred to the model technical
description (Lawrence et al., 2018, 2019) and references therein (the CLM5 technical model documentation can
be accessed here: https://escomp.github.io/ctsm‐docs/versions/release‐clm5.0/html/tech_note/index.html).

In this study, all simulations were carried out with a modified version of CLM5 that was developed in an earlier
study by Boas et al. (2021). This CLM5 version was extended with an adaptation of the winter cereal repre-
sentation after Lu et al. (2017), a cover cropping and crop rotation routine, and crop phenology parameters for the
northern hemisphere crop types winter wheat, sugar beet and potatoes. These modifications have proven to
significantly improve the simulation of energy fluxes, vegetation states and carbon fluxes (e.g., leaf area index
(LAI), net ecosystem exchange (NEE) and yield) at several Central European sites (Boas et al., 2021).

2.2. Study Areas and Input Data

Simulations were conducted for two intensive cropping regions in different climate zones, spanning a two‐decade
period from 1999 to 2019 (Figure 1). The first domain covers large parts of the south‐east Australian wheat belt in
the state of Victoria in Australia (AUS‐VIC) and is characterized by large rain‐fed agricultural areas with large
paddock sizes, primarily dedicated to cereal cultivation, and extensive naturally vegetated or woody areas (i.e.,
grasslands, native woody cover and woody horticulture). The agricultural parts of the domain are mostly char-
acterized by deep groundwater tables. The main cash crop in this domain is winter wheat, followed by barley and
canola. Land cover information for the AUS‐VIC domain was based on the Victorian Land Use Information
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System (VLUIS) product for the year 2016 (Morse‐McNabb et al., 2015; Victoria Government Data Direc-
tory, 2018). This data set was generated through a combination of time series analysis of remote sensing data
(MOD13Q1 or MYD13Q1 by NASA) and annually collected field data (Morse‐McNabb et al., 2015), and
provides detailed information on land use and land cover for the entire state of Victoria. Unfavorable weather
conditions for winter crop farming can have profound impacts on regional grain production and yield per area
(ABARES, 2020).

The second domain covers the state of North Rhine‐Westphalia in Germany (DE‐NRW). It is characterized by a
diverse landscape with urban, natural, and mixed agricultural areas that are mostly rain‐fed. The groundwater
regime in this domain is largely characterized by relatively shallow groundwater tables and a high degree of
human influence due to intensive land use and urbanization. Land cover information for the DE‐NRW domain
was based on the 30‐m resolution land cover data set by Griffiths et al. (2019). This data set was generated from
Sentinel‐2A MSI and Landsat‐8 OLI observation data from the NASA Harmonized Landsat‐Sentinel data set for
the year 2016 (Claverie et al., 2018). Compared to agricultural reference data, the derived crop type and land
cover map showed a high overall accuracy of over 80%, particularly for crop types with high abundances such as
cereals, maize, and canola (Griffiths et al., 2019). The agricultural land cover in DE‐NRW is primarily
concentrated in the northern and western part of the domain, alongside natural vegetation and urban areas. The
main cash crops in this region are winter wheat, winter barley, corn, sugar beet and rape seed (Figure 1,
BMEL, 2020, 2022). In the southern part of the domain, which includes the Eifel, Bergisches Land and Sauerland
regions, forests and grassland are the dominant land cover. Due to a late cold spell in late February/early March,
agricultural yields in the area were significantly impacted in 2018. In addition, extreme heat and dry spells during
both summers of 2018 and 2019 resulted in unusually high spatial variability of yield, particularly for cereals
(BMEL, 2020, 2022; NRW State Government, 2020).

Figure 1. (a) AUS‐VIC simulation domain extent and (b) dominant land use type based on VLUIS data, modified after (Victoria Government Data Directory, 2020);
(c) DE‐NRW simulation domain extent and (d) dominant land use type based on Griffiths et al. (2019), modified from Boas et al. (2023).
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For both domains, soil variables such as clay, sand and organic matter content were derived from the global
SoilGrids database (Hengl et al., 2017). SoilGrids provides soil information at seven depths (0, 0.05, 0.15, 0.30,
0.60, 1 and 2 m) at 250 m, 500 m and 1 km spatial resolution. Further soil properties, such as the saturated
hydraulic conductivity and soil retention parameters are calculated within CLM5 based on the pedotransfer
function after Cosby et al. (1984). Irrigation demand is dynamically calculated based on simulated soil moisture
conditions. For irrigated croplands, the model assesses daily whether irrigation is needed. Irrigation is triggered
when the crop leaf area index is greater than zero and available soil water drops below a specified threshold.

The amount of fertilizer is prescribed by crop functional types and varies spatially based on the LUMIP land use
and land cover change time series (Lawrence et al., 2016). The LUMIP time series (1999–2019) provides land use
and land cover data for prescribing fertilizer rates in the CLM5 model. Fertilizer application is adjusted spatially
based on crop type and regional agricultural intensity, representing average historical rates. While spatial vari-
ability is accounted for, temporal changes in fertilization practices are not simulated beyond a repeated annual
cycle, with nitrogen from industrial fertilizer applied consistently over 20 consecutive days each year. Manure
nitrogen is uniformly applied at 0.002 kg N/m2/year across all crop types.

2.3. Forcing and Validation Data

The simulations were forced with the bias‐adjusted global reanalysis data set WFDE5 (Cucchi et al., 2020). The
WFDE5 data set provides all meteorological variables that are needed to force CLM5 (i.e., precipitation,
incoming shortwave and longwave radiation, atmospheric pressure, relative humidity, wind speed and temper-
ature) at hourly time step for the period from 1979 to 2019, and at a 0.5° spatial resolution. The data set was
generated using the WATCH Forcing Data (WFD) methodology (Cucchi et al., 2020) based on the ERA5
reanalysis product (Hersbach et al., 2020).

In order to validate and compare model results for crop yields, we used state‐wide agricultural statistics. For
Victoria, official records of annual crop yields are available for all simulated years from the database of the
Australian Bureau of Agricultural and Resources Economics and Sciences (ABARES). The Australian crop
report contains both realized and forecast growing area, production and yield for the major winter and summer
crops on the Australian state level. The reports are produced with the participation of industry contacts and are
released quarterly with the most recent estimates and updated forecasts.

For the DE‐NRW domain, official agricultural records are available for 2005–2019 from IT.NRW (2022). The
yield statistics are compiled for selected agricultural crops at the state and municipal levels in Germany. This
information is gathered through an annual crop reporting process, where industry contacts with local expertise for
the reporting areas, typically a municipality, provide harvest information and yield estimates for the year.
Acknowledging the inherent uncertainties in these agricultural data sets, that is, stemming from variations in
reporting methods, they provide valuable insights into the overall magnitudes and yearly trends of crop yield. As
such, they serve as suitable validation data sets to assess the general quality of yield predictions in terms of
magnitudes and inter‐annual variations.

For validating simulated soil moisture contents in the top soil layers (up to 0.06 m depth), we used the CCI Soil
Moisture‐Combined data set, version 07.1 (ESA‐CCI), from the European Space Agency's (ESA) Soil Moisture
Essential Climate Variable (ECV) Climate Change Initiative (CCI) project (Dorigo et al., 2017; Gruber
et al., 2017, 2019; Preimesberger et al., 2021). The ESA‐CCI‐SM combined product provides global daily
volumetric soil moisture data at a spatial resolution of 0.25° from 1978 to 2021 (Dorigo et al., 2017; Gruber
et al., 2017, 2019; Preimesberger et al., 2021). Additionally, we compared simulation results to the Soil Moisture
Active Passive (SMAP) mission Enhanced Level‐3 radiometer soil moisture product (SMAP L3) that is available
since March 2015 and comprises soil moisture retrievals at a spatial resolution of 36 and 39 km (Entekhabi
et al., 2016). When comparing daily simulation results with satellite‐derived soil moisture retrievals, it is
important to acknowledge the inherent uncertainties of these products, for example, due the impact of vegetation
cover and surface characteristics, variations in satellite sensor characteristics, algorithm and model uncertainties
etc., which may result in a distorted representation of daily soil moisture dynamics (Seo & Dirmeyer, 2022).
Furthermore, it is crucial to recognize that these products represent near‐surface soil moisture and can only serve
as an indication for the conditions over the entire root zone.
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2.4. Simulation Experiments and Analysis

As a first step, a model spin‐up of more than 850 simulation years was conducted for each simulation domain so
that the model ecosystem variables reach equilibrium prior to production simulations (experiment I in Table 1).
This spin‐up process comprised an initial phase under accelerated decomposition conditions lasting more than
300 years, followed by a final phase in normal mode lasting over 500 years. The spin‐up is essential to attain
equilibrium in ecosystem carbon and nitrogen pools, gross primary production, and total water storage. Notably,
achieving equilibrium is particularly time‐intensive for the slow carbon and nitrogen pools. For the spin‐up, the
combined global CRUNCEP atmospheric forcing data set (Viovy, 2018) was used, which consists of the CRU
TS3.2 0.5 × 0.5° data set covering the period from 1901 to 2002 (Harris et al., 2014) and the NCEP reanalysis
2.5 × 2.5° 6‐hourly data set available for 1948–2016 (Kalnay et al., 1996).

Then, simulations were conducted for both study domains with high resolution land cover information as
described in Section 2.2 for the period 1999–2019, forced with WFDE5 data (experiment II in Table 1) (Cucchi
et al., 2020). In the following step, the land cover was modified by setting the CFTs on all cropland land units
within the domain to winter wheat. This synthetic winter wheat monoculture was simulated for both domains with
the WFDE5 forcing data set, and for the years 1999–2019 (experiment III in Table 1). Additionally, the same set
of simulations was conducted for the synthetic winter wheat monocultures with 50% reduced WFDE5 precipi-
tation to synthetically create more drought stress for the crop (experiment IV in Table 1).

The model performance was statistically evaluated using the root mean square error (RMSE), the Pearson cor-
relation coefficient (r), the squared correlation coefficient (R2), and the mean bias error (MBE):

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑
n

i=1
( xi − yi)

2
√

, (6)

r =
∑(xi − x) ( yi − y)
(n − 1) · σxσy

, (7)

R2 = 1 −
∑
n

i=1
( yi − xi)

2

∑
n

i=1
(yi − y)

2
, (8)

MBE =
∑
n

i=1
( xi − yi)

n
,

(9)

where n is the total number of time steps (days or years), xi and yi are the simulated and the observed values of a
given variable at every time step i, overbar represents the mean value, and σx and σy are the standard deviations of
the simulated and observed data respectively.

In order to quantify the inter‐annual variability of annual crop yields and daily soil moisture contents, the mean
absolute anomaly (MAA [%]), the mean absolute deviation (MAD) and mean absolute deviation ratio (MADr [‐])
were defined as follows:

Table 1
Overview of Conducted Simulation Experiments, Used Forcing’s and Simulation Period, for Each Domain

Description Forcing Simulation period

I Spin‐up CRUNCEP 1901–2016, loop

II Realistic land cover simulations WFDE5 1999–2019

III Winter wheat monoculture experiments WFDE5 1999–2019

IV Winter wheat monoculture experiments with reduced precipitation modified WFDE5 with 50% reduced precipitation 1999–2019
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MAA =

∑
n

i=1
(

⃒
⃒
⃒
⃒
Yi − Y
Y

⃒
⃒
⃒
⃒ · 100 )

n
,

(10)

MAD =

∑
n

i=1
(
⃒
⃒Yi − Y

⃒
⃒)

n
,

(11)

MADr =
MADX

MADy
, (12)

where i is time step (days or years) and n the total number of time steps, Yi is the respective variable [t/ha] at every
time step i, Y is the 1999–2019 average of that variable [t/ha], MADX and MADy are the mean absolute deviation
[t/ha] for the simulations and the reference data set respectively.

The absolute anomaly (AA) and the absolute deviation (AD) provide the percentage difference and the average
absolute difference, respectively, between observations at the respective time step and the long‐term average.
Their mean values MAA and MAD provide insight into overall variability. Lower values in both metrics indicate
less variability and a closer alignment to the long‐term average. The MADr compares the calculated variability
(MAD) between simulations and the reference data set, with values nearing one indicating greater similarity.

3. Results
3.1. Soil Moisture Regime

We compared the simulated surface soil moisture content (SMC) of the top soil layers (0–0.06 m depth) with data
from the combined ESA‐CCI product (Dorigo et al., 2017; Gruber et al., 2017, 2019) and the satellite derived
SMAP L3 data (Entekhabi et al., 2016).

For AUS‐VIC, the simulated SMC is systematically higher than ESA‐CCI during the main cropping season
(May–October) and lower during the austral summer months (December–February), resulting in a R2 value of
approximately 0.7 (Figure 2). The SMAP L3 product generally showed larger day‐to‐day fluctuations compared
to the ESA‐CCI data, with higher values during the main cropping season (May–October) and lower values
during the summer months (December–February) than ESA‐CCI. The simulations resulted in SMC very close to

Figure 2. Simulated daily surface soil moisture (0–0.06 m depth) throughout the AUS‐VIC domain (a) from 1999–2019, and (c, d, e, g, h, i) for individual years,
compared to the ESA‐CCI product and available SMAP L3 data. Scatterplots show the correlation between simulated SMC and (b) ESA‐CCI, and (f) SMAP L3, with
the respective regression equations.
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the SMAP L3 product during the first quarter of the year, while underestimating maximum values in the SMAP
L3 data set during the growing season (May–October).

For the DE‐NRW domain, comparison against ESA‐CCI revealed large deviations compared to the simulated
surface SMC, resulting in an R2 value of approximately 0.4. For DE‐NRW, the simulated winter season
(December–February) and early growing season (March, April) SMC were significantly overestimated for all
years, while late summer SMCs (August, September) were systematically underestimated with respect to ESA‐
CCI (Figure 3). The SMAP L3 product showed smaller values compared to ESA‐CCI and was largely over-
estimated by CLM5 results for the majority of years and months, particularly during the main growing season
(April–August) (Figure 3). The drought years of 2018 and 2019 are reflected in lower simulated SMC compared
to the 1999–2019 average, in particular in (late) summer, where CLM5 showed lower values than SMAP L3 in
2019 (Figure 3i).

Simulated soil moisture by CLM5 showed a smaller inter‐annual variability than SMAP, but a larger inter‐annual
variability than ESA‐CCI. For the AUS‐VIC domain, the mean absolute anomaly (MAA) for simulated soil
moisture was approximately 30% (0.063 m³/m³ MAD), while it was 19% (0.036 m³/m³ MAD) for ESA‐CCI and
48% (0.097 m³/m³ MAD) for SMAP (Table 2). Similarly, for the DE‐NRW domain, the simulated soil moisture
showed an MAA of approximately 17% (0.058 m³/m³ MAD), while ESA‐CCI showed 7% MAA (0.02 m³/m³
MAD) and SMAP L3 had 23% MAA (0.058 m³/m³ MAD). The correlations between the simulated daily surface
soil moisture and the reference data sets were generally higher for the AUS‐VIC domain compared to DE‐NRW.
The correlation coefficient between simulated soil moisture and both reference data sets in AUS‐VIC was
approximately 0.85, whereas it was approximately 0.6 for both SMAP and ESA‐CCI in DE‐NRW.

3.2. Regional Crop Productivity

For the multi‐decadal simulation runs we compared the simulated annual crop yields for DE‐NRW and AUS‐VIC
to available yield records. We calculated yield variability as mean absolute deviation (MAD) and mean absolute
anomaly (MAA) both for simulations and yield records, as well as the ratio of MAD from simulations and records
(MADr) as explained in Section 2.4 (Table 3).

In general, the simulations produced mean annual crop yields that are comparable to the mean observed yields
across both domains and for all considered crop types in terms of overall magnitudes (Figures 4a and 4c). For
AUS‐VIC, the average simulated mean annual crop yield (excluding sorghum) was 1.57 t/ha, compared to 1.75 t/
ha in records. In DE‐NRW, the simulated mean yield averaged for all considered crops was 6.7 t/ha, while the
official records reported approximately 7 t/ha. Additionally, there were differences in the simulated yield amounts

Figure 3. Simulated daily surface soil moisture (0–0.06 m depth) throughout the DE‐NRW domain (a) from 1999–2019, and (c, d, e, g, h, i) for individual years,
compared to the ESA‐CCI product and available SMAP L3 data. Scatterplots show the correlation between simulated SMC and (b) ESA‐CCI, and (f) SMAP L3, with
the respective regression equations.
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and inter‐annual yield variability between the two domains (Figures 4b and 4d). The simulated annual yield
amounts were significantly higher in DE‐NRW than in AUS‐VIC for all crops, which is consistent with official
yield statistics (Table 3). Additionally, the simulated inter‐annual variability was lower for DE‐NRW than for
AUS‐VIC, which is also the case in the official records (Figures 4b and 4d, Table 2).

For AUS‐VIC, profound differences were observed in the inter‐annual yield variability between the simulation
results and crop survey records, with the absolute deviation (AD) being more than 3 times lower on average in
simulation results compared to records (Figure 4b and Table 3). Specifically, the mean absolute anomaly was
approximately 5% (0.12 t/ha MAD) for winter wheat in the simulations and 29% in the records. Similarly, the
MAA and MAD values for sorghum were substantially underestimated, with 9% and 0.2 t/ha for simulations,
compared to 59% and 1.3 t/ha for yield records. Overall, the lowest MAD ratios were reached for sorghum and
winter wheat, with 0.15 and 0.2 respectively, while simulation results for canola and barley had ratios of 0.95 and

Table 2
Mean Annual SMC, Mean Absolute Anomaly (MAA), Mean Absolute Deviation (MAD) and Mean Absolute Deviation Ratio
(MADr) for Simulated Daily Soil Moisture Content, and Daily Soil Moisture Data From ESA‐CCI and SMAP L3 From 1999–
2019, for AUS‐VIC and DE‐NRW Respectively

Mean SMC [m3/m3] MAA [%] MAD [m3/m3] MADr [− ] r [− ] RMSE [m3/m3] MBE [m3/m3]

AUS‐VIC

CLM 0.21 29.927 0.063 ‐ ‐ ‐ ‐

ESA‐CCI 0.188 19.012 0.036 1.757 0.858 0.032 0.01

SMAP L3 0.203 48.038 0.097 0.645 0.846 0.014 0.001

DE‐NRW

CLM 0.344 16.869 0.058 ‐ ‐ ‐ ‐

ESA‐CCI 0.267 7.041 0.019 3.087 0.622 0.064 0.033

SMAP L3 0.262 26.306 0.069 0.843 0.574 0.024 0.004

Note. Corresponding performance parameters r, RMSE and MBE were calculated with respect to the validation data sets
ESA‐CCI and SMAP L3.

Table 3
Mean Annual Crop Yield, Mean Absolute Anomaly (MAA), Mean Absolute Deviation (MAD) and Mean Absolute Deviation
Ratio (MADr) for Simulated and Recorded Yields for 1999–2019, Averaged for Winter Wheat, Barley, Canola and Sorghum
for AUS‐VIC, and for Winter Wheat, Spring Wheat, Canola and Corn for DE‐NRW

Mean yield
[t/ha] MAA [%] MAD [t/ha]

MADr [− ] r [− ] RMSE [t/ha] MBE [t/ha]Obs CLM Obs CLM Obs CLM

AUS‐VIC

Winter wheat 1.95 2.25 28.65 5.26 0.56 0.12 0.21 0.39 0.68 0.3

Barley 1.97 1.31 28.75 22.62 0.57 0.29 0.51 0.07 0.98 − 0.64

Canola 1.32 1.15 21.99 24.03 0.29 0.28 0.95 0.11 0.52 − 0.18

Sorghum 1.84 2.2 59.21 9.05 1.34 0.2 0.15 0.07 1.76 0.42

Meana 1.75 1.57 34.65 15.24 0.69 0.22 0.32 0.12 ‐ ‐

DE‐NRW

Winter wheat 8.32 7.9 5.39 2.63 0.45 0.27 0.6 0.42 0.61 − 0.4

Spring wheat 6.3 5.09 8.29 7.27 0.52 0.43 0.83 0.11 1.4 − 1.12

Canola 3.87 5.07 5.05 8.49 0.2 0.49 2.51 0.22 1.39 1.28

Corn 9.97 8.76 7.93 3.43 0.79 0.3 0.38 0.13 1.58 − 1.29

Mean 7.11 6.7 6.67 5.46 0.49 0.37 0.76 0.12 ‐ ‐

Note. Corresponding performance parameters r, RMSE and MBE were calculated for the annual mean yield from 1999 to
2019 for AUS‐VIC and 2005–2019 for DE‐NRW with respect to available observations. aSorghum excluded.
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0.5 respectively (Table 3). The crop functional types (CFTs) for barley and canola are both derived from the
spring wheat CFT (with adjusted values for several phenological parameters such as maximum LAI, maximum
crop height, etc.), which explains the very similar yield predictions and inter‐annual fluctuations for these two
crops (Figures 5c and 5e). The drought year of 2018 and the reduction in recorded yields compare to previous
years was only captured in the simulations for barley and canola (Figures 5c and 5e).

For the DE‐NRW domain, the simulated total annual crop yield was close to official records, especially for winter
wheat (Figure 6a, Table 3). However, simulated inter‐annual yield variability was considerably lower than in the
yield records for winter wheat (with a MAA of 2.6% and MAD of 0.3 t/ha in the simulations compared to 5.4%
and 0.5 t/ha in the records) and corn (MAA of 3.4% and MAD of 0.3 t/ha in the simulations, and 7.9% and 0.8 t/ha
in the records, approximately), resulting in low MAD ratios of 0.6 and 0.4, respectively (see Figure 6 and Table 3).

Figure 4. Simulated mean annual crop yield (CLM) and recorded mean annual yield (Obs), and corresponding absolute deviation from the 1999–2019 mean for each
year (AD), averaged for all regarded crops, for (a–b) the AUS‐VIC domain (winter wheat, barley, canola, sorghum) and (c–d) the DE‐NRW domain (winter wheat,
spring wheat, canola, corn).
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Similar to the results for AUS‐VIC, the influence of the shared crop parameterization between canola and spring
wheat was evident in the simulation results for D‐NRW. While the inter‐annual yield variations for spring wheat
were reasonably well‐captured in the simulations, with a MAD ratio of approximately 0.8, the inter‐annual yield
variations for canola were overestimated in comparison to records, resulting in a very high MAD ratio of 2.5.

Throughout AUS‐VIC, crop yield is strongly correlated with the total amount of rainfall throughout the cropping
season (May–October), as demonstrated by the positive correlation of total growing season rainfall and recorded
grain yields (Figure 7). This relationship was not evident in the CLM simulation results. In addition, a weak
correlation could be observed between the simulated annual yield and the simulated root zone soil moisture (0.02–
0.32 m depth) (Figure 8a).

For DE‐NRW, the correlation between total growing season rainfall and recorded or simulated crop yields is not
significant, reflecting the energy‐limited regime in the area. This is demonstrated by the weak correlation between
recorded yields and seasonal rainfall amounts. For spring wheat, the influence of precipitation is reflected in the
correlation with recorded yields (wetter years resulted in higher grain yield), while for other crops the constraining
effects of water availability and energy are more in balance. The simulation results showed a slightly negative
correlation of yield, particularly pronounced for spring wheat and canola, with seasonal rainfall (and root zone
soil moisture), which might be related to less energy input (smaller global radiation) for growing seasons with
higher precipitation amounts (Figure 8b). With this negative correlation the simulation results overestimated the
effects of energy limitation for the domain.

Figure 5. (left) Simulated mean annual crop yields for (a) winter wheat, (c) barley, (e) canola and (g) sorghum from 1999–2019 throughout the AUS‐VIC domain
compared to available records from ABARES (2022) with (right) corresponding correlations between simulated and observed values, with the respective R2 values and
regression equations. The corresponding data is also shown in Table A1.
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In order to better isolate the impact of soil moisture and precipitation on simulated crop yield, we additionally
performed a multiple regression analysis, taking global (shortwave) radiation into account. We examined two
different models to explain the simulated mean annual crop yield using Equation 1 the simulated mean seasonal
root zone soil moisture and the mean seasonal global radiation, and Equation 2 the seasonal precipitation amount
and the mean seasonal global radiation as independent variables. For DE‐NRW, the model showed a moderate
relationship between the variation in crop yield and changes in root zone soil moisture and global radiation with a
R2 of 0.38, and a slightly lower correlation of seasonal precipitation amount and global radiation with crop yield
with a R2 of 0.35 (Tables A3 and A4). For DE‐NRW, global radiation exhibited a positive relationship, implying
that increased radiation was associated with higher crop yields, while both the root zone soil moisture and
seasonal rainfall amount exhibited negative relationships (not showing any statistical relevance with p‐values
>0.05) (Table A3). For the AUS‐VIC domain, the model showed a weaker relationship between variations in crop
yield and changes in root zone soil moisture and global radiation than in DE‐NRW, with an R2 of 0.16. Both the
root zone soil moisture (p‐value of 0.09) and global radiation (p‐value of 0.26) were not statistically significant
predictors in this case. The correlation of seasonal precipitation amount and global radiation with crop yield was
slightly higher with an R2 of 0.34, with both showing a positive relationship with crop yield (Tables A3 and A4).

Analysis of the simulated transpiration beta factor, which represents plant water stress in CLM5, did not show any
apparent correlation with the simulated yield in both domains (Figure 9). The transpiration water stress (βt = 1
indicates absence of water stress, declining values indicate growing water stress) is utilized in CLM5 to regulate

Figure 6. (left) Simulated mean annual crop yields for (a) winter wheat, (c) spring wheat, (e) canola and (g) corn from 1999–2019 in the entire DE‐NRW domain
compared to available records from 2005–2019 (IT.NRW, 2022) and (right) corresponding correlations between simulated and observed values, with the respective R2

values and regression equations. The corresponding data is also shown in Table A2.
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plant photosynthesis. The lack of a correlation for AUS‐VIC suggests that the simulated crop yield was not
influenced by transpiration water stress (Figure 9a). In DE‐NRW, even a slightly negative correlation could be
observed for simulated crop yield and transpiration beta (Figure 9b). This is consistent with the results regarding
the correlation of simulated yield with both root zone soil moisture and precipitation as discussed above (Figures 6
and 7).

3.3. Winter Wheat Monoculture Experiments With Reduced Precipitation

In a subsequent step, we conducted synthetic monoculture experiments where winter wheat cultivation was
implemented exclusively across all crop land units. These experiments were performed using two different
forcings: the default WFDE5 data set (CLM_WFDE5) and the WFDE5 data set with 50% reduction in

Figure 7. Relationship between mean annual crop yield (simulated (CLM) and recorded (Obs)) and WFDE5 cropping season rainfall amounts for (a–d) AUS‐VIC (May–
October) and (e–h) DE‐NRW (April–September) spanning 1999–2019. The yields of the following individual crops are given: (a) winter wheat; (b) barley; (c) canola;
(d) sorghum; (e) winter wheat; (f) spring wheat; (g) canola; (h) corn. The respective R2 values and regression equations are given for (blue) simulation results and (black)
records. Corresponding statistical results for the relationship between mean annual crop yield and seasonal rainfall are listed in Table A3.

Figure 8. Relationship between mean annual crop yield (CLM) and the mean simulated root zone soil moisture (0.02–0.32 m depth) for the cropping seasons from 1999
to 2019, averaged for (a) AUS‐VIC (May–October) and (b) DE‐NRW (April–September), and for the respective crops. The respective R2 values and regression
equations for the mean yield are indicated in black. Corresponding statistical results are listed in Table A3.

Journal of Advances in Modeling Earth Systems 10.1029/2023MS004023

BOAS ET AL. 15 of 31

 19422466, 2024, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S004023 by Forschungszentrum
 Jülich G

m
bH

 R
esearch C

enter, W
iley O

nline L
ibrary on [12/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



precipitation (CLM_LowP). The reduction in rainfall synthetically increased the plant water stress for both
domains, as represented by the transpiration beta factor.

In the AUS‐VIC domain, the simulations with reduced precipitation not only led to decreased mean yield
amounts, introducing a larger negative bias in overall yield results, but also increased inter‐annual variability
compared to the WFDE5 simulations with unchanged precipitation. The recorded winter wheat yields exhibited a
mean absolute anomaly of 28.7% (0.56 t/ha MAD), which was underestimated in the default CLM_WFDE5 runs
with a mean absolute anomaly of 8.4% (0.16 t/ha MAD). In the reduced precipitation runs this underestimation
was less pronounced with a mean absolute anomaly of 13.5% (0.18 t/ha MAD) (Figure 10b, Table 4). In the rain‐
fed and water‐limited regions of the AUS‐VIC domain, we expect a positive correlation between seasonal rainfall
amounts and crop productivity. CLM results were able to capture this relationship only with the reduced pre-
cipitation, indicating an underestimation of plant water stress in the scenario with the default WFDE5 forcing
(Figure 11a).

In the DE‐NRW domain, the reduced precipitation runs consistently underestimated the total annual winter wheat
yield for all years, except 2007 (Figure 10c and Table 4). The variability of yield increased from 3.3% (0.25 t/ha
MAD) in default WFDE5 simulations to 7.5% (0.55 t/ha MAD) with reduced precipitation amounts
(CLM_LowP), which was even higher than the recorded yield variability with 5.39% MAA (0.45 t/ha MAD). The
overestimation of yield variability in the CLM_LowP runs was also reflected in the high MADr value of 1.2. By
reducing precipitation amounts, we artificially created a more water‐limited regime in the DE‐NRW domain,
resulting in a positive linear correlation between seasonal rainfall amounts and yield, which was even more
pronounced than for the official yield records (Figure 11d).

The synthetic winter wheat monoculture experiments additionally offer the possibility to study simulated spatial
differences as well as the effects of soil properties on simulated crop productivity in more detail (Figure 12). The
highest variability of simulated annual crop yield is reached for regions with high sand contents, while in regions
with relatively high clay contents, the inter‐annual variability of yield is comparably low. This observed pattern
suggests a link between the simulated yield and the higher water‐retaining capabilities of clay‐rich soils. In
summary, the reduced precipitation amounts illustrate a more realistic water stress response from the crops,
leading to a more realistic correlation of yield and rainfall amounts for the water‐limited regime in AUS‐VIC and
higher inter‐annual yield variabilities. However, the reduced precipitation lead to an underestimation of annual
yield amounts for both domains compared to records (Tables A1 and A2).

Figure 9. Relationship between simulated mean annual transpiration beta and simulated mean annual crop yield (CLM—
mean), and recorded mean annual yield (Obs—mean) respectively, averaged for all regarded crops, for (a) the AUS‐VIC
domain (winter wheat, barley, canola, sorghum) and (b) the DE‐NRW domain (winter wheat, spring wheat, canola, corn).
The respective R2 values and regression equations for (blue) simulations and (black) records are also given. Corresponding
statistical results are listed in Table A3.
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4. Discussion
During the growing season, the vast majority of agricultural land is under water‐limited conditions (Koster
et al., 2009; Nemani et al., 2003; Papagiannopoulou et al., 2017). Studies indicate a widespread trend of eco-
systems moving from energy to water limited due to climate change (Denissen et al., 2022; Orth et al., 2023).
Unsustainable water use in large parts of the world additionally increases the ecosystem vulnerability to drought
with depleting groundwater and surface water resources (Samaniego et al., 2018; Taylor et al., 2013; Wada
et al., 2010, 2012). Thus a reliable representation of the plant water stress regime and drought responses of
vegetation are essential for the relevance of LSM applications for climate change research. The representation of

Figure 10. Mean annual crop yield from simulations forced with WFDE5 (CLM_WFDE5) and 50% reduced WFDE5 precipitation (CLM_LowP), and recorded mean
annual yield (Obs) for (a) the AUS‐VIC domain and (c) the DE‐NRW domain, with (b, d) the corresponding annual absolute yield anomaly (AA) for each simulation
scenario and domain. The corresponding data is also shown in Tables A1 and A2.
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vegetation responses to changes in available water is a major issue for studying the impact of climate change on
ecosystems and food security.

Our validation of simulated crop yields against state‐wide statistics revealed reasonable estimates of total crop
yield but underestimated inter‐annual variability. Notably, better representation of inter‐annual yield variability

Table 4
Mean Annual Crop Yield, Mean Absolute Anomaly (MAA), Mean Absolute Deviation (MAD) and Mean Absolute Deviation
Ratio (MADr) for Available Records and Results From Winter Wheat Monoculture Experiments, Forced With WFDE5
Precipitation (CLM_WFDE5) and 50% Reduced WFDE5 Precipitation (CLM_LowP), Averaged for 1999–2019, for Both
Domains

Mean yield [t/ha] MAA [%] MAD [t/ha] MADr [− ] r [− ] RMSE [t/ha] MBE [t/ha]

AUS‐VIC

Obs 1.95 28.65 0.56

CLM_WFDE5 1.92 8.41 0.16 0.29 0.05 0.67 − 0.03

CLM_LowP 1.33 13.51 0.18 0.32 0.59 0.83 − 0.62

DE‐NRW

Obs 8.32 5.39 0.45

CLM_WFDE5 7.89 3.20 0.25 0.56 0.29 0.64 − 0.43

CLM_LowP 7.14 7.48 0.55 1.22 0.45 1.60 − 1.46

Note. Corresponding performance parameters r, RMSE and MBE were calculated for the annual mean yield from 1999 to
2019 for AUS‐VIC and 2005–2019 for DE‐NRW with respect to available observations.

Figure 11. Relationship between mean annual winter wheat yield (either WFDE5 precipitation simulations (CLM_WFDE5), 50% reduced WFDE5 precipitation
simulations (CLM_LowP) or records (Obs)) and the corresponding rainfall amounts for the cropping seasons of 1999–2019 (a, d), the simulated root zone soil moisture
(b, e) and the simulated transpiration beta factor (c, f). Results are provided for the AUS‐VIC domain (May–October) (a–c) and the DE‐NRW domain (April–
September) (d–f). The corresponding regression equations are indicated and color coded. The recorded yield is compared to WFDE5 annual precipitation.
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was observed for CFTs related to spring wheat, which has been widely tested at global scale and its parame-
terization calibrated for CLM5 (Lombardozzi et al., 2020), including barley and canola, which exhibited similar
magnitudes and fluctuations in annual yield. In addition, the model performed relatively well for winter wheat in
the DE‐NRW enhancements validated for winter wheat at several European sites in previous studies (Boas et
a., 2021). In general, CLM5 is tuned to replicate average crop yields through parameter adjustments. Theoreti-
cally, well‐calibrated parameters have the potential to offset the impacts of environmental factors such as pests,
diseases, wildlife damage or pollutants. Previous studies highlighted the importance of including crop‐specific
physiological parameters in improving the quantification of the diurnal energy partitioning and yield estimates
(e.g., Boas et al., 2021; Lu et al., 2017; Sulis et al., 2015). Further improving the parameterization within the crop
phenology module of CLM5 for the individual crops could therefore help to alleviate model limitations.

Analysis of the correlation between simulated annual yield and recorded rainfall amounts, as well as simulated
root zone soil moisture contents, revealed model limitations in representing the water‐limited regime in AUS‐
VIC. Throughout Victoria, crop growth and yield is highly influenced by rainfall patterns and amounts
(French & Schultz, 1984a, 1984b) which is also reflected in a strong positive correlation between total growing
season rainfall amounts from reanalysis and observed total yields (Figures 7a–7d). This relationship is not re-
flected in CLM5 simulations. Only in reduced precipitation experiments for winter wheat, did we observe a
positive linear relationship between yield and rainfall amounts; and yield and soil moisture for AUS‐VIC
(Figures 11a–11c). In the DE‐NRW domain, the shallower groundwater tables and better water storing proper-
ties of soils lead to an absence of positive correlation between rainfall and overall annual yield compared to AUS‐
VIC. In addition, due to the high annual precipitation in general, soil water does not represent the main limiting
factor for state‐wide agricultural yields throughout DE‐NRW, and global radiation is the most limiting factor.

Figure 12. Spatial mean absolute yield anomaly (MAA) for winter wheat monoculture simulations (1999–2019) throughout
(a) AUS‐VIC and (c) DE‐NRW, and (b, d) the sand content in the root zone throughout the respective domains, based on
SoilGrids (Hengl et al., 2017).
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Even during the drought year of 2018, the state‐wide yield statistics for DE‐NRW do not show a strong declining
trend (Figure 4c). While severe yield losses were recorded in specific regions within the state NRW, other regions
with shallower groundwater tables and soils with higher water‐storing capacities experienced record yields due to
more sunshine hours (which is also represented in the negative correlation between seasonal rainfall and yield,
Figures 7e–7h). The slightly negative correlation between simulated crop yield and seasonal rainfall, as well as
root zone soil moisture, in DE‐NRW (which can be attributed to the reduction in sunshine hours caused by cloud
cover associated with increased rainfall) suggests an exaggeration of the energy‐limited regime by the land
surface model and thus, a failure to correctly reproduce the effects of soil water stress on crop yield. The
simulation results do not reflect the differences in the water‐limited and energy‐limited regimes between the two
domains, except for a weak positive correlation between yield and rainfall in AUS‐VIC, which indicates an
inaccurate representation of the water‐limited regime in AUS‐VIC and a systematic model insensitivity toward
drought stress. This is also underlined by the results from the multiple regression analysis (i.e., root zone soil
moisture, precipitation and global radiation) that did not identify seasonal soil moisture as a relevant predictor for
simulated crop yield in the AUS‐VIC domain (Table A3).

Our results are consistent with other studies that indicate systematic issues across LSMs in simulating vegetation
responses under drought conditions (e.g., De Kauwe, Zhou, et al., 2015; Trugman et al., 2018; Ukkola
et al., 2016). Especially in water‐limited agricultural regions, the selection of crop varieties is largely influenced
by their resilience to prolonged dry periods. While plant physiological properties play an important role in the
energy partitioning at the land surface and carbon fixation and drought sensitivity varies considerably among
plants, state‐of‐the‐art LSMs currently assume the same drought sensitivity for all crop types. The studies by
Trugman et al. (2018) and Sulis et al. (2019) emphasize the importance of including mechanistic water limitation
algorithms in LSMs to improve the representation of plant hydraulics and thus projections of the land carbon sink.
Trugman et al. (2018) found that soil moisture‐limited productivity and its uncertainties significantly influenced
carbon cycle simulations and thus concluded that the representation of soil moisture represents a major source of
uncertainty in land surface models.

In CLM5, the empirical soil moisture stress formulation from earlier model versions was replaced with a plant
hydraulic stress model (Lawrence et al., 2019). However, one of the main challenges for the application of plant
hydraulic models for different biomes is the parameterization. In CLM5, plant hydraulics are physically
constrained by plant‐dependent parameters, such as the conductivities of the soil‐root interface and at the in-
terfaces between each of the plant elements (Kennedy et al., 2019). Due to a lack of readily available data for
these parameters, they do not vary for the different crops and represent first estimates, which is a challenge the
model developers are well aware of Kennedy et al. (2019) and Lawrence et al. (2019). The simulated plant
water states in CLM5 are physical properties that can be validated against field observations (e.g., Konings
et al., 2017; Li et al., 2017) which could facilitate the estimation of specific hydraulic parameters for the in-
dividual plants.

Our analysis of the transpiration beta factor that represents water stress in CLM5 revealed a lack of correlation
between transpiration beta and the simulated annual yield. Reducing the precipitation in the forcing data sets
generally had an effect on the transpiration beta factor, which reflects the induced water stress at lower pre-
cipitation rates. It appears that the threshold for plant water stress induced yield loss is not reached in the
simulations with unchanged WFDE5 precipitation amounts or its effects on overall grain yield remain too
small. The small range of transpiration water stress in simulation results implies that the modeled system
experienced a relatively uniform degree of water stress, possibly due to low variations in soil moisture con-
ditions or other factors influencing water availability for transpiration, such as the water‐retaining capacities of
the soil or irrigation. While the effects of irrigation can be considered negligible in our predominantly rain‐fed
simulation domains, this small range of beta serves as an indication for inconsistencies in the representation of
the soil moisture regime. In addition to limitations in representing crop yield variability, we also observed
profound differences of the simulated soil moisture contents throughout the decades compared to the ESA‐CCI
and the SMAP L3 products. For DE‐NRW, the simulated surface soil moisture was systematically over-
estimated compared to both ESA‐CCI and SMAP L3 during the early growing season. The same was observed
for the AUS‐VIC simulation results compared to ESA‐CCI, where CLM5 simulations resulted in higher daily
SMCs. Compared to SMAP L3, however, the simulated SMC fitted well during the early stages of the year,
while daily values of SMAP L3 during the growing season were underestimated in the simulation results. The
observed differences in error between the simulated soil moisture content (SMC) by CLM5 and satellite‐
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derived data (ESA‐CCI and SMAP L3) at different growth stages can be attributed to several factors specific to
each region. Overall, these discrepancies in error between simulated and satellite‐derived SMC at different
growth stages could stem from variations in soil properties, precipitation patterns, and uncertainties associated
with satellite‐derived data retrieval algorithms and spatial resolution, all of which interact differently in each
region and influence soil moisture dynamics throughout the year. The discrepancy during winter months may
be due to greater biases in satellite‐derived products related to frozen soil and snow cover. Moreover, the higher
SMC in CLM5 simulations outside of the main cropping season in DE‐NRW could also result from a
misrepresentation of post‐harvest field conditions, where large fields of cropland are simulated as baer soil
while, in reality, cover crops or weeds are growing on these fields. A misrepresentation of the soil moisture
regime with overly high soil moisture contents could potentially dampen the potential benefits of the new plant
hydraulic stress routine in CLM5. In earlier studies, data assimilation has been applied to address discrepancies
between CLM simulated soil moisture and data derived from satellite and field observations (e.g., Hung
et al., 2022; Naz et al., 2019; Strebel et al., 2022; Zhao et al., 2021). However, data assimilation of soil moisture
and groundwater level observations had only limited effects on simulated evapotranspiration (Hung
et al., 2022). Another way to improve the predictions of hydrologic states and fluxes with LSMs is the coupling
with subsurface or groundwater models, such as ParFlow (Kollet & Maxwell, 2008; Kuffour et al., 2020), in
integrated modeling approaches (e.g., Kollet & Maxwell, 2008; Maxwell et al., 2011; Naz et al., 2023; Soltani
et al., 2022; Tian et al., 2012; Yuan et al., 2008). These studies have shown that coupled models can simulate
complex processes more realistically than uncoupled models (e.g., Maxwell et al., 2011; Tian et al., 2012; Yuan
et al., 2008). In addition, it is crucial to acknowledge the uncertainties in the satellite‐derived data sets. Studies
evaluating the quality of SMAP in Europe found local errors of 0.056 cm3/cm3 for a catchment in the state of
NRW, Germany (Zhao et al., 2021), and comparable error magnitudes close to 0.06 cm3/cm3 for a region in the
Netherlands (van der Velde et al., 2021). Addressing these uncertainties is crucial for interpreting satellite‐
derived soil moisture data accurately, with ongoing research and technological advancements contributing to
improvements in reliability. For example, Seo and Dirmeyer (2022) propose an adjustment of ESA‐CCI soil
moisture achieved through Fourier transform time‐filtering, which led to improved subseasonal variability,
increased temporal correlation, and enhanced skill across various land cover classes.

Moreover, the simulation of soil water fluxes is intricately linked to the hydraulic properties of the soil, which
are in CLM5 estimated from soil texture information using pedotransfer functions after Clapp and Horn-
berger (1978) or Cosby et al. (1984). In addition, the use of different pedotransfer functions for specific soil
types can introduce substantial variability in the numerical modeling results of water fluxes, as demonstrated by
Weihermüller et al. (2021) and Boas and Mallants (2022). One approach to improve the simulation of soil
moisture in CLM5 may therefore involve the numerical implementation of various pedotransfer functions
tailored to different soil types. Alternatively, the soil hydraulic information could be acquired through machine
learning techniques or by utilizing suitable pedotransfer functions, similar to the approach outlined by Montzka
et al. (2017), and incorporated via input files similar to the other surface input data. The inherent uncertainty in
simulation results due to input data extends also to meteorological information. Bodjrenou et al. (2023)
assessed multiple reanalysis products, including WFDE5, in West Africa from 1981 to 2019. While WFDE5
provided accurate estimates for annual precipitation, it exhibited an excess of small rainfall events compared to
observations. These uncertainties in commonly used reanalysis products for land surface modeling add an
additional layer of complexity when examining the inter‐annual variability of simulated variables influenced by
precipitation.

While the adequate simulation of plant water stress is crucial to simulate crop productivity in response to
changing weather conditions, it is also important to address additional processes that influence the yield
variability of rain‐fed agriculture. Crop management practices (e.g., fertilization, double cropping) and the
selection of cultivars specifically bred for high grain yields under local climate conditions have significant
impacts on agricultural production and are currently not accounted for in CLM5. Allowing for a broader
range of yields (maximum productivity) for specific crops through changes in the physiological parameters
that constrain the simulation of crop growth and development in CLM5 could be another approach to allow
for a higher inter‐annual variability of yield. Whether structural modifications to the phenology module or
systematic adjustments in the crop‐specific parameterization can effectively allow for a broader range of
yield magnitudes for the respective crops remains to be evaluated through model evaluation and parameter
sensitivity studies.
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In summary, we argue that the limitations of model performance presented and discussed in this study arise from
three main sources. First, despite the incorporation of the new plant hydraulic stress routine in CLM5, there is a
lack of sensitivity of crop yield towards drought stress and soil water availability. This may arise from the
simplified parameterization of plant hydraulics which is unified for all plant functional types in CLM5. Second,
CLM5 simulated soil moisture exhibited higher values during the cropping season, particularly in the early stage,
than both ESA‐CCI and SMAP products, which may have contributed to the weaker inter annual variability of
yield. Third, while CLM5 already incorporates a complex representation of crop growth and phenology compared
with other state‐of‐the‐art LSMs, there are several significant factors that contribute to inter‐annual yield vari-
ability that are currently not adequately accounted for. Some examples include human crop management practices
in response to technological advancements and public policies, diverse farming techniques such as varying
fertilization amounts and types, double‐cropping, as well as environmental factors such as pests, diseases, and
floods. Additionally, the crop–specific parameterizations in the crop phenology module, as well as the limited
availability of data representing a wide range of crop varieties and geographic regions, represent substantial areas
for improvement.

To overcome these challenges, the plant specific hydraulic parameterization needs to be improved, which can be
achieved with the help of high‐resolution field observations combined with parameter estimation methods. For a
better representation of crop growth and yield, there is a need for further model developments, representing the
influence of frost, pests, hail and wind on crop growth, different fertilizer types and application techniques and a
more detailed representation of root crops. Finally, we propose to use state and parameter updating techniques,
such as data assimilation, when studying global climate change impacts on agriculture with CLM5 to better
account for model and parameter uncertainties (e.g., Strebel et al., 2022).

5. Summary and Conclusions
Rapid changes in atmospheric conditions and land use over recent decades have made the fate of our terrestrial
biosphere, depletion of natural water resources, food security, and the impact of anthropogenic carbon emis-
sions major global research topics. Land surface models (LSMs), such as CLM5, are the primary tools used to
study changes in our terrestrial surface in response to climate projections. With predicted changes in regional
and global climate, and a potential increase in drought risk, it is vital for the LSMs used in coupled climate
models to realistically portray the drought responses of the land surface, and vegetation in particular. Reliable
predictions of crop yield variability can contribute to discussions on climate change impacts and mitigation
strategies.

In this study, we evaluated the performance of the land surface model CLM5 forced with reanalysis data in
representing inter‐annual variability of crop yield in multi‐decadal simulations for two regions, AUS‐VIC
and DE‐NRW, in different climate zones and with different soil moisture regimes. Evaluation studies for
different ecosystems, such as the one presented here, are essential to improve our understanding of model
performance and to identify the key challenges toward reliable projections of LSMs in climate change
research.

Our analysis showed that CLM5 was able to capture the overall magnitudes of yields for individual crops, as well
as regional differences for the same crops in the two domains (i.e., lower overall yield magnitudes for AUS‐VIC
than for DE‐NRW for the same crop type). Overall, the lower annual yields per area over AUS‐VIC can be
attributed to differences in climate, crop varieties grown, soil characteristics, fertilizer rates and management
techniques (e.g., larger paddock sizes with less dense plantations). Previous studies showed that the yield
magnitudes for winter cereals specifically were too low at multiple European test sites (Boas et al., 2021). Hence,
modifications and enhancements were introduced and validated for several European sites by Boas et al. (2021).
These modifications were also used in our study, contributing to the reasonable yield magnitudes observed for
DE‐NRW. These factors collectively contribute to the disparities observed in simulation results between the two
domains. However, the inter‐annual fluctuations of yield in response to differences in weather patterns, such as
seasonal rainfall amounts, were underestimated for both domains. Interestingly, the higher variability throughout
the AUS‐VIC domain compared to DE‐NRW was reflected in the simulation results. Analysis of the plant water
stress regime and correlations between seasonal rainfall amounts and crop yields revealed a misrepresentation of
the more water‐limited regime in AUS‐VIC.
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Experiments with reduced precipitation amounts that synthetically increased the plant water stress in simulations
were able to better capture inter‐annual variations of crop yield but underestimated crop yield. CLM5 is typically
fine‐tuned to replicate average crop yields through parameter adjustments. Theoretically, well‐calibrated pa-
rameters have the potential to offset the impacts environmental factors such as pests, diseases, wildlife damage or
pollutants.

Possible explanations for the underestimation of inter‐annual variability of crop yields include: (a) a lack of
sensitivity within the vegetation and crop module toward changes in soil moisture contents and soil water
available for plants, possibly due to the parameterization of plant hydraulics; (b) systematic wet bias in simulated
soil moisture content that may have dampened the potential benefit of the new plant water stress representation in
CLM5; and (c) general uncertainties in the simulation of crop growth and yield due to inaccurate parameteri-
zations and underrepresentation of environmental factors (e.g., pests, diseases) and human influences (e.g.,
agricultural management decisions, fertilizer type and application, cultivar selection). To remedy those effects,
model enhancements are necessary, particularly in the field of plant hydraulic and physiological parameteriza-
tions. In addition, integrated approaches with subsurface or groundwater models (e.g., ParFlow) along with data
assimilation offer potential for enhancing the simulation accuracy of soil moisture and other variables in future
studies.
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Table A3
Statistical Analysis Results R2, t‐Statistics and Probability Values (p‐Values) for Simulated Annual Mean Crop Yield
(Averaged for All Regarded Crops) in Relation to the Evaluated Variables Seasonal Mean Root Zone Soil Moisture (0.02–
0.32 m Depth) [m3/m3], Seasonal WFDE5 Rainfall Amounts [mm], and Transpiration Beta [‐], for the AUS‐VIC and
DE‐NRW Domain, Respectively

AUS‐VIC R2 t‐stat p‐value

Root zone soil moisture 0.07 1.15 0.26

Seasonal rainfall 0.18 2.06 0.05

Transpiration beta 0.00 0.01 0.99

DE_NRW R2 t‐stat p‐value

Root zone soil moisture 0.21 2.22 0.04

Seasonal rainfall 0.21 2.28 0.03

Transpiration beta 0.18 2.05 0.05

Note. Additional Parameters can be Found in Supporting Information S1

Table A4
Multiple Correlation Coefficient (Multiple r), R2, Adjusted R2 (R2 Adjusted for the Complexity of the Model), Standard Error
and Corresponding t‐statistics and Probability Values (p‐Values) Resulting From Multiple Regression Analysis for
Simulated Annual Mean Crop Yield (Averaged for All Regarded Crops, Dependent Variable), Explained With the Simulated
Mean Seasonal Root Zone Soil Moisture and the Mean Seasonal WFDE5 Global Radiation as Independent Variables, and
With the Seasonal WFDE5 Precipitation Amount and Mean Seasonal WFDE5 Global Radiation as Independent Variables,
for the DE‐NRW and AUS‐VIC Domain, Respectively

Annual mean crop yield ‐ mean seasonal root zone soil moisture and mean seasonal global radiation

DE‐NRW

Multiple r 0.6146 Coefficients Standard error t‐statistics p‐value

R2 0.3777 Intercept 4.5111 2.7914 1.6161 0.1235

Adjusted R2 0.3086 Root zone soil moisture − 6.9219 4.5068 − 1.5359 0.1420

Standard error 0.3563 Global radiation 0.0356 0.0159 2.2312 0.0386

AUS‐VIC

Multiple r 0.4081 Coefficients Standard error t‐statistics P‐value

R2 0.1665 Intercept − 3.3872 2.9009 − 1.1676 0.2582

Adjusted R2 0.0739 Root zone soil moisture 5.5062 3.0850 1.7849 0.0911

Standard error 0.2102 Global radiation 0.0182 0.0123 1.4782 0.1566

Annual mean crop yield ‐ seasonal precipitation amount and mean seasonal global radiation

DE‐NRW

Multiple r 0.5945 Coefficients Standard error t‐statistics P‐value

R2 0.3534 Intercept 3.1432 2.3843 1.3183 0.2039

Adjusted R2 0.2816 Seasonal rainfall − 0.0016 0.0013 − 1.2625 0.2229

Standard error 0.3631 Global radiation 0.0339 0.0172 1.9677 0.0647

AUS‐VIC

Multiple r 0.5864 Coefficients Standard error t‐statistics P‐value

R2 0.3439 Intercept − 3.6735 2.2545 − 1.6294 0.1206

Adjusted R2 0.2710 Seasonal rainfall 0.0034 0.0012 2.9854 0.0079

Standard error 0.1865 Global radiation 0.0226 0.0107 2.1063 0.0495
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Data Availability Statement
The modified model version of CLM5 that was used in this study is publicly accessible as a supplement to Boas
et al. (2021). All underlying research data used for this study is publicly accessible. The WFDE5 data set is
distributed by the Copernicus Climate Change Service (C3S) through its Climate Data Store (CDS) (Copernicus
Climate Change Service, 2018). Soil information from SoilGrids are publicly accessible via the International Soil
Reference and Information Center (ISRIC) ‐ World Soil Information data hub (ISRIC, 2023). Land cover in-
formation that was used for the DE‐NRW domain can be accessed via https://doi.pangaea.de/10.1594/PAN-
GAEA.893195 (Griffiths et al., 2018). Land cover information for AUS‐VIC from the Victorian Land Use
Information System is publicly accessible via the Victoria Government Data Directory (Victoria Government
Data Directory, 2018). The crop yield statistics from the Australian Crop Report can be accessed at https://doi.
org/10.25814/xqy3‐sx57 and https://doi.org/10.25814/0c4s‐qd09 (ABARES, 2020, 2022) and the yield records
for NRW are available at https://www.it.nrw/statistik/eckdaten/erntevon‐ausgewaehlten‐landwirtschaftlichen‐
feldfruechten‐und‐gruenland‐767 (IT.NRW, 2022). Soil moisture products used in this study are available at
https://nsidc.org/data/spl3smap/versions/3 (Entekhabi et al., 2016) for SMAP L3 and ESA‐CCI at https://doi.
pangaea.de/10.1594/PANGAEA.940409 (Hongtao et al., 2022).
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